Azizul Zahid

azahid@vols.utk.edu

AzizulZahid

in LinkedIn

Azizul Zahid

https://azizulzahid.github.io/

+1 865 232 7003

Research Interest

LLM, Edge-AI, Reinforcement Learning, Health Robotics, Wearable Sensors

Professional Experience

June'23 - Current

■ Graduate Research Assistant, EPIC Lab, University of Tennessee Knoxville.

Advisor: Dr. Sai Swaminathan

Aug'23 - Current

Graduate Teaching Assistant, EECS, University of Tennessee Knoxville.

Courses: Embedded Systems (ECE 455/555) Computer Organizations (COSC 230), Circuits I (ECE 201), Computer System Organization (ECE 356)

Education

June'23 - Current

■ Ph.D. in Computer Engineering

University of Tennessee Knoxville.

Advisor: Dr. Sai Swaminathan.

June'23 – May'25

Masters of Science in Computer Engineering

University of Tennessee Knoxville.

Advisor: Dr. Sai Swaminathan.

Feb'17 - May'22

Bachelors of Science in Electrical & Electronic Engineering

Bangladesh University of Engineering & Technology.

Advisor: Dr. Abdul Hasib Chowdhury

Publications

Zahid, Azizul, J. Fan, F. Wang, A. Dy, S. Swaminathan, and F. Liu, "Toward aligning human and robot actions via multi-modal demonstration learning," in *ICRA 2025 Workshop: Human-Centered Robot Learning in the Era of Big Data and Large Models*. **©** URL: https://openreview.net/forum?id=ZyRVRYAC97.

- Fahad, Imran and Scott, Danny and **Zahid, Azizul** and Bringle, Matthew and Patil, Srinayana and Bevins, Ella and Palileo, Carmen and Swaminathan, Sai, "Radiogami: Batteryless, long-range wireless paper sensors using tunnel diodes," *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.*, vol. 9, no. 2, Jun. 2025. ODI: 10.1145/3729487.
- Zahid, Azizul et al., "PulseRide: A Robotic Wheelchair for Personalized Exertion Control with Human-in-the-Loop Reinforcement Learning," in 2025 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), Los Alamitos, CA, USA: IEEE Computer Society, Jun. 2025, pp. 57–68. URL: https://doi.ieeecomputersociety.org/.
- Mir Sayeed Mohammad and **Azizul Zahid** and Md Asif Iqbal, *Banglanum a public dataset for bengali digit recognition from speech*, 2024. arXiv: 2403.13465 [eess.AS]. **O** URL: https://arxiv.org/abs/2403.13465.
- D. Scott, M. Bringle, I. Fahad, G. Morales, A. Zahid, and S. Swaminathan, Neurocamtags: Long-range, battery-free, wireless sensing with neuromorphic cameras, New York, NY, USA, Sep. 2024. ODI: 10.1145/3678529.

Research Project Highlights

Ongoing

- SkillCoaching: An LLM-based on-device Real-Time Task Assistant
- Human-in-the-Loop Interactive ML for Edge-AI

Past

- PulseRide: A Robotic Wheelchair for Personalized Exertion Control with Humanin-the-Loop Reinforcement Learning
 - Heart rate and ECG data for Adaptive Assistive system. We introduced PulseRide, a novel wheelchair system that provides personalized assistance based on each user's physiological responses, helping them maintain their physical exertion goals. Our system integrates real-time physiological data-such as heart rate and ECG-with wheelchair speed to deliver adaptive assistance.
 - **Human in the loop Reinforcement Learning**. We proposed human-in-the-loop reinforcement learning approach with Deep Q-Network algorithm (DQN), the system adjusts push assistance to keep users within a moderate activity range without under- or over-exertion.
 - **User study**. We conducted preliminary tests with 10 users across carpet and slate terrains. PulseRide maintained users' heart rates in the moderate activity zone 71.7% longer than manual wheelchairs and reduced muscle contractions by an average of 41.86%, delaying fatigue and improving comfort.
- Toward aligning human and robot actions via multi-modal demonstration learning
 - **Multi-Modal Demonstration Learning**. We introduced this framework that independently predicts human intentions and robot actions from RGB and voxelized RGB-D inputs within the same manipulation task.
 - **Cross-Modal Alignment**. By learning semantic correspondences across modalities, the system enables alignment between human and robot behaviors, paving the way for shared understanding in collaborative tasks.
 - **Performance and Challenges**. On the RH2oT dataset, our model achieved 71.7% accuracy for both human intention and robot action recognition. We identified key challenges-class imbalance and limited temporal context-motivating future improvements through synthetic augmentation and temporal voxel encoding for more robust multimodal learning in assistive and household domains.

Skills

Programming Language

Python, MATLAB, C/C++, Assembly.

Tools & Framework

PyTorch, Tensorflow, Huggingface, Keras, LangChain, LangGraph.

Operating System

Linux, Windows, Unix.

Others

Git, GitHub, Latex, MS office

Honors & Awards

Aug' 24 Received **Tickle College of Engineering Fellowship** from Dept. of EECS, UTK.

Aug' 23 Received **Rowland Family Graduate Fellowship** from Dept. of EECS, UTK.

May' 22 Received **Deans Award** from Dept. of EEE, BUET.

References

Available on Request