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Fig. 1. Battery-freewireless tags A.NeuroCamTags in a smart kitchen environment, monitoring object activity (highlighted
in yellow: microwave, mixer, faucet, paper towel, blender), toaster oven temperature, and drawer activity. B. Spectrogram of
microphone modulated LED signal and machine learning activity classification as a blender. C. Neuromorphic camera view
of smart kitchen environment from a 2000 microseconds (µs) timeframe moment.

In this research, we introduce NeuroCamTags, a battery-free platform designed to detect a range of rich human interactions
and activities in entire rooms and floors without the need for batteries. The NeuroCamTag system comprises low-cost
tags that harvest ambient light energy and utilize high-frequency modulation of light-emitting diodes (LEDs) for wireless
communication. These visual signals are captured by an available neuromorphic camera, which boasts temporal resolution and
frame rates an order of magnitude higher than those of conventional cameras. We present an event processing pipeline that
allows simultaneous localization and identification of multiple unique tags. NeuroCamTags offer a wide range of functionalities,
providing battery-free wireless sensing for various physical stimuli, including changes in temperature, contact, button presses,
key presses, and even sound cues. Our empirical evaluations demonstrate impressive accuracy at long ranges up to 200
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feet. In addition to these findings, we consider a range of applications such as battery-free input devices, tracking of human
movement, and long-range detection of human activities in various environments such as kitchens, workshops, etc. By
reducing reliance on batteries, NeuroCamTags promotes eco-friendliness and opens doors to exciting possibilities in smart
environment technology.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; Interaction
devices.

Additional Key Words and Phrases: Activity sensing; Battery-free; Wireless sensing; Context Aware Computing;
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1 Introduction
For decades, smart environments have promised to improve our lives by inferring context, actions, and activities
in various settings, from public areas and offices to homes, workshops, factories, and healthcare centers. To
achieve this vision, one of the most commonly adopted methods for making dumb environments “smart” is using
embedded cameras. However, only using cameras is limited by the richness of the data that they capture. For
instance, most camera approaches capture just visual information, and therefore, they are fused with data from
different sensing modalities to capture human touch, temperature, audio, pressure, etc. However, using these
smart devices (both cameras and sensors) for perpetual sensing of human environments has not yet been realized
due to two major issues: power and privacy. Smart devices such as cameras and sensors are defined by short
battery lifetimes, high maintenance costs, and rapid obsolescence, contributing to the explosion of electronic
waste in the past decades [10, 18]. Replacement of billions of batteries (per year) that power these sensors would
be unsustainable and have high costs. The ecological impacts of computing with batteries have become clearer
and clearer [16].
Fortunately, emerging paradigms for cameras, such as neuromorphic cameras [13, 35], present numerous

benefits, including low-power operation, extremely rapid response times down tomicroseconds (µs), and enhanced
privacy due to their reduced data capture compared to standard cameras (see Figure 1 C). In our research, we
introduce NeuroCamTags—a hardware platform for building a collection of battery-free interactive devices
that harness the unique capabilities of neuromorphic cameras to foster eco-friendly intelligent spaces. We
designed NeuroCamTags as solar-powered devices capable of sensing user interactions and wirelessly transmitting
data via high-frequency LED modulation. We then detect these light signals over considerable distances using
neuromorphic cameras due to their superior high dynamic range (HDR) and rapid temporal resolution compared
to the frame rates and HDR capabilities of traditional cameras. For example, we show a range of battery-free
wireless sensors and interactive devices in Figures 1 and 2. NeuroCamTag sensors are capable of monitoring
object use, environment variables, and user interaction. In Figure 2, we see the temperature of the glue gun
held by a user in the workshop as far away as 70 feet from the camera in our 160 feet by 100 feet maker space
environment.
In this paper, we describe the design and implementation of NeuroCamTags: circuit designs, sensors, energy

harvesting, and energy management methods. We investigated modulation methods for embedding sensor data,
including On-Off Keying (OOK) and frequency modulation (FM), optimized for optical wireless communication
with neuromorphic cameras. We further discuss the software pipeline developed for demodulation, signal
processing, and the application of machine learning to interpret the data acquired by neuromorphic cameras for
the detection of NeuroCamTags and the analysis of user activity. We present our experimental findings on the
operational efficiency of NeuroCamTags in various scenarios—covering diverse distances, lighting conditions,
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Fig. 2. Human interaction and sensing A. Playing an interactive game of pong with multiple battery-free game controllers.
B. Sending temperature sensor reading and localization information wirelessly over a long range (70 feet)

.

and angles of view, as well as their application in assorted intelligent settings such as workshops and kitchens.
Our system can recognize user interactions with an accuracy of 96.3% and maintains a false positive rate of 3.4%.
Our studies also reveal the capability of our tags to function effectively from distances up to 200 feet. Furthermore,
we examine the specifics of power usage of our devices, noting the minimal light levels (500 lux) required for
battery-free operation and the data transmission rates needed for functionality. We conclude by showcasing 11
practical applications we developed, demonstrating the broad capabilities and potential uses of NeuroCamTags.

Overall, we believe this work introduces a new sensing approach for smart environments with unique strengths
to contribute to human-computer interaction (HCI) researchers. We make the following contributions to this
work:

• An end-to-end system including hardware, and signal processing algorithms, for battery-free smart envi-
ronment sensing based on neuromorphic cameras.

• Custom circuits that integrate sensing, energy harvesting, voltage regulation, and embedded computation.
These circuits are uniquely designed for both analog and digital visible light communication (VLC) with
neuromorphic cameras, optimizing power consumption and operational range.

• Empirical Evaluation of the usable range, distance, power and transmission speed of NeuroCamTags under
various conditions

• A proof-of-concept demonstration and technical validation of activity detection in two smart environments
instrumented with NeuroCamTag wireless sensors.

2 Background and Related Work
Neuromorphic vision sensors are inspired by the design of the human eye’s rods and cones in detecting light.
Similar to the human eye, image signals are processed individually across pixels in these sensors. Unlike standard
RGB cameras that capture entire scenes, neuromorphic cameras monitor changes in brightness (polarity) for each
pixel, doing so with remarkable speed and minimal delay. They offer six key benefits for vision-based sensing
compared to traditional cameras:

Pixel-level Independence: Each pixel in a neuromorphic camera operates independently and asynchronously
(see Figure 1 C). Instead of capturing frames at a fixed rate, each pixel in the sensor detects changes in intensity
independently and only responds when it sees a change.
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Low Latency: Since pixels respond to changes immediately, the latency can be extremely low, often in the
order of microseconds, significantly faster than the milliseconds typical of conventional cameras.

High Dynamic Range (HDR): Event cameras are known for their high dynamic range, often exceeding 120
dB compared to about 60-70 dB for standard cameras. This enables them to work well in both very bright and
very dark environments without the typical over or underexposure problems.

Power Efficiency: By only sending information when changes are detected, event cameras typically consume
substantially less power [12], making them efficient for edge IoT applications.
Reduced Data: As they only output data when changes in the scene occur, event cameras can generate far

less data than traditional cameras, which capture the entire scene at regular intervals. This can reduce storage
and processing requirements.

Temporal Resolution: The asynchronous nature of the pixel response allows for very high temporal resolu-
tion, capturing quick changes in a scene that might be missed by the slower frame rates of traditional cameras.

These advantages underscore the potential of neuromorphic cameras for energy efficient sensing and visible
light communication. An array of recent related has explored the use of neuromorphic camera for diverse
applications. For instance, work by Kueng et al. [22], Craig et al. [19], and Zhou et al. [64] has showcased event
cameras in visual odometry and tracking mobile ground robots. In the realm of driver monitoring systems, Shariff
et al. [46] have demonstrated the effectiveness of event cameras even under dynamically changing scene lighting.
Mueggler et al. [29] achieved 6-DOF pose tracking for high-speed maneuvers using event-based methods.

The field of non-contact signal acquisition and fault diagnosis has also advanced significantly, with Guang et al.
[17] introducing a method for integrating machine-generated event data into precise vibration signal extraction
and fault diagnosis. In emergency detection and alerting systems, Costa et al. [8] developed systems for urban,
agricultural, and industrial settings using neuromorphic cameras.

Pertinent to our work, Chen et al. [7] created a system for accurately identifying high-frequency flickering LEDs
in indoor positioning using neuromorphic cameras. Wang et al. [54] developed a beacon system with flickering
high-frequency LEDs for robotic communication. In the field of human-computer interaction, neuromorphic
cameras have been used for gesture detection [2] and, more recently, for activity recognition from an egocentric
perspective [34]. For an in-depth understanding of neuromorphic cameras, we recommend the work by Gallego
et al. [14], which discusses camera principles, sensors, applications, challenges, and future directions in machine
perception.
To the best of our knowledge, our work is one of the first to employ neuromorphic cameras for battery-free

sensing and visible light wireless communication of human interactions within smart environments. This includes
integrating multiple modalities such as temperature, audio, touch, and various input devices.

3 Design Considerations
There are several key design requirements we sought to achieve with NeuroCamTag system.

• D1. Self-powered, battery-and maintenance-free operation: In a smart environment where sensing
devices need to be pervasively deployed, the tags must operate for long periods without maintenance. The
tags should be self-powered via energy harvesting and operate without batteries.

• D2. Support rich wireless input: The sensing devices should go beyond presence detection and user
input. The tags should support a rich array of wireless interactions to include continuous input events,
touch, temperature, pressure, voice based control, detect audio events or even multi-modal interactions to
fit the environment and user needs.

• D3. Support for adaptability and no device programming: Lighting conditions in the built environment
vary widely; therefore, the design of tags should support different lighting conditions by allowing modular
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Fig. 3. Digital NeuroCamTag System Overview A. Battery-free wireless NeuroCamTag back and front view. B. Neuro-
morphic camera receiving OOK modulated light signal from NeuroCamTag. C. Flow chart of the event processing pipeline
decoding OOK message from sensor.

energy harvesting. Besides lighting, some tags should require no hardware programming, i.e., tags that
operate by simple hardware components.

• D4. Minimize components and cost: The cost per sensing device (each NeuroCamTag) should be under
$10-$20 to achieve meaningful deployment as environments outfitted with 100s of sensors are scalable at
lower price points. To achieve lower costs, a single tag should have less than 15 components.

Taking into account these design goals, two tags were designed – Digital NeuroCamTag and Analog Neu-
roCamTag. These tags embody many of the design goals discussed above such as designing, developing, and
validating our approach for interactive wireless sensors with neuromorphic cameras. While both analog and
digital NeuroCamTags are self-powered (D1), support rich input sensing (D2), and wirelessly communicate with
the camera at long distances using light from LEDs, there are some key differences. For instance, the digital
NeuroCamTag uses an OOK modulation scheme and is much more power efficient and able to operate in a low
lux environment (even 500 lux), as power is not needed for communicating a logic "0". On the other hand, our
analog NeuroCamTag is "always on" and uses frequency modulation (FM) to communicate with the camera. In
addition to power, the sensing and wireless communication in the analog NeuroCamTag is achieved by using
a voltage-controlled oscillator (555 timer). The 555 timer is "capacitor/resistor programmable", requiring no
software programming (D3) and are adaptable to varying light levels, as modular solar panels can be added or
removed. Finally, both our tags consist of less than 15 components, lowering deployment costs (D4).
As outlined in our background section, neuromorphic cameras function asynchronously at the pixel level,

enabling us to detect signals from multiple tags simultaneously during interactive events. Specifically, we use
the EVK3HD neuromorphic camera, featuring 1 Mega Pixel from Prophessee [36], to process the visual signals
emitted by our tags. While the camera we use is an evaluation kit camera, more recently, neuromorphic cameras
that operate with STM32 microcontroller units (MCUs) are available for mass adoption [37].

4 Digital NeuroCamTag System Overview
In this section, we present a comprehensive overview of the digital NeuroCamTag System, as depicted in Figure
3. The system consists of two primary elements: the tag hardware and a software pipeline for processing input
sensor data and detecting digital tags. These tags utilize ambient light for power; they detect user interaction,
sense the environment, and transmit digital data wirelessly via light signals. The neuromorphic camera, positioned
in a secluded, out-of-the way area with a clear view of the tags, such as on the wall or up in the corner of a room,
is able to constantly monitor the tag’s activity. Upon receiving messages, our software algorithm first applies a
filtering process that removes non-messages by the identified header. Following this, the decoding algorithm
takes over, clustering messages from various digital tags to accurately extract and interpret the sensor data.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 122. Publication date: September 2024.



122:6 • Scott et al.

Fig. 4. Digital NeuroCamTag schematic

4.1 Hardware Design
Our digital NeuroCamTag hardware is broken down into energy harvesting, energy management, storage, sensing,
computing with ultra-low-power MCU, and wireless communication. Figure 4 shows the layout of the circuit
modules and the components chosen to optimize for self-powered operation.
Energy Harvesting:We utilize the IXOLAR SM141K06L solar panel to harvest ambient solar energy. This

panel has dimensions of 1.654 inches X 0.906 inches X 0.083 inches and has a weight of 3.4 grams. It is designed to
deliver an open-circuit voltage of 4.15 volts, though actual performance can fluctuate depending on the intensity
of available light.
During our development phase, we evaluated a range of smaller solar panels, including models SM730K12L

and KXOB25-05X3F, which differed in both size and photocurrent generation. Interactive user input necessitates
both high-speed responsiveness due to constant sensing and continuous wireless communications capable of
handling several messages per second, for example, for playing games like pong, using a battery-free wireless
controller with knobs. The chosen solar panel meets our power requirements most effectively, offering an optimal
balance of size, weight, power, and cost (SWAP-C) in relation to the predetermined message length (see §6.6).

Energy Management and Storage: The power output of solar panels fluctuates due to the varying lighting
conditions (e.g. changing sunlight) of the environment, as well as user interaction, such as moving a battery-free
input device. To provide stable voltage, we investigated several buck-boost devices such as LTC3808, BQ25570,
etc., and finally chose AEM10941 due to its ultra-low cold start voltage of 380mV, startup current of 7.8µA and
a quiescent current draw of <1µA(Iq). Finally, in addition to harvesting, we support capacitor based energy
storage for battery-free operation. Our circuits support capacitor banks that can be soldered. We chose tantalum
capacitors (ranging from 680µF to 0.4F) as they offer the lowest DC leakage properties and lowest equivalent
series resistance (ESR). The choice of capacitor used depends on the bootup time vs storage capacity desired. In
section §6.6, we detail trade-offs for choosing capacitor values.
MCU and Computation:When a sufficient voltage (3.3v) is achieved by energy harvesting, the AEM10941

chip onboard delivers power to our ultra-low-power 16-bit MCU MSP430G2553 that operates in five low power
modes (LPM4, LPM3, LPM2, LPM1, LPM0). The lowest mode (LPM4) consumes as little as 80µA. We selected the
MSP430 microcontroller due to its lower power operation, ease of use, the availability of open-source firmware
libraries and toolchains, and its established presence within the embedded systems community. Our MCU switches
between the different LPM modes between input sensing and wireless communication. For example, pressing
a button triggers an interrupt from LPM4 (deep sleep), waking up the MCU into its active state for wireless
communication and returning back to deep sleep mode (LPM4) to save power. Although LPM4 is the lowest, not
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all interactions can operate in that mode due to the clock requirement for an ADC read. Therefore, only button
press interactions switch between LPM4, whereas other interactions using ADC read, such as a temperature,
moving a slider, rotating a knob, etc., operate between LPM3 and the active state.

Encoding Input Data and Wireless Communication: Our MCU employs a digital On-Off-keying (OOK) to
transmit interactive events and sensor data by modulating LEDs wirelessly. We chose OOK for its power-saving
advantage—when transmitting the binary sequence of "1" and "0", the LED remains on for ’1’ and off for the
representation of ’0’, conserving power. Specifically, we calculate the LED’s "on" time for a binary ’1’ by using
formula 1 below:

Half Bit On/Off Time =

(
1

𝐵𝑃𝑆
× 1
2

)
ms (1)

leading to significant energy savings, as no power is consumed during the ’0’ intervals. For instance, with a
transmission rate of 1000 Bits Per Second (BPS), the LED lights up for just 500 microseconds for each ’1’ bit.
As depicted in Figure 3, each digital NeuroCamTag message is comprised of 16 bits divided into four distinct
segments: a 4-bit header for synchronization, a 4-bit identifier for tagging up to 16 unique tags, a single-bit parity
for error reduction, and a 7-bit payload for data representation. The 7-bit payload was selected to accommodate a
sufficient range of analog inputs (0-127), such as those from dials, sliders, or temperature sensors. For example, a
temperature reading of 76° would be transmitted as its 7-bit binary counterpart (1001100). The 4-bit header is
optimized for message synchronization with our camera’s decoding algorithm (detailed in §4.1)

4.2 Software Pipeline
We now discuss our camera software for decoding wireless transmission from digital NeuroCamTags. Neuromor-
phic cameras capture encoded light signals as they can operate with high temporal resolution and detect changes
within 100s of microseconds.

Filtering: Before we begin processing our signal, we employ the camera’s spatial-temporal contrast filter
(STC) to reduce noise. The STC filter works by analyzing camera input contrast across a scene over time and
removes isolated events. This filter is particularly useful in scenarios where both the spatial relationships between
objects and their changes over time are important.

Decoding: After filtering, when the first encoded message bit arrives, the decoding process starts. For instance,
when a "1" bit arrives, which corresponds to an LED turned on, an event is logged as 𝑒1(𝑝1,𝑡1,𝑥1,𝑦1), where 𝑝1 is
the polarity of the event, 𝑡1 is the timestamp, 𝑥1, 𝑦1 are the coordinates. Following the first event, when the LED
turns off at timestamp 𝑡2, it generates a second event with a polarity of 0 at the same coordinate (see Figure 5).

• For each XY coordinate our algorithm creates a double-ended queue. As events arrive, they are continuously
added to the appropriate double-ended queue by each coordinate. The events are also checked to ensure
they do not exceed the expected message time threshold (𝑇ℎ1). An event occurring after the threshold
prompts the processing of all queues up to 𝑇ℎ1 at various coordinates, as shown in Figure 5C.

• While processing these queues during the second step, our camera software inserts "0’s" in queues where
significant time lapses follow a polarity shift from 0 to 1 or 1 to 1, as depicted in Figure 5 with long gray
blocks.

• As a third step, the software converts queues into message candidates. During this step the parity bit is
verified. Message candidates with incorrect parity are discarded.

• As the fourth and final step, the software gathers message candidates from various coordinates. These
messages undergo a k-means clustering process as well as a majority voting process, where the most
common message is selected as the output. The k-means algorithm is chosen for its computational efficiency,
with the ’k’ value determined by the number of tags present in the scene.
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Fig. 5. Neuromorphic camera event decoding A. NeuroCamTag flashes an LED in OOK manner to create events which
arrive in the camera’s view B. Polarity changes are decoded as on/off events. C. Similar messages are clustered by location
using a time threshold based on the length of nearby messages to eliminate duplicates.

5 Analog NeuroCamTag System Overview
Focused on fulfilling design goal D3, which emphasizes adaptability and eliminating the need for device program-
ming, we developed an analog NeuroCamTag utilizing a 555 timer with expandable slots for solar panels to adapt
to varying light conditions. Unlike digital circuits that represent information using binary (0s and 1s), analog
circuits represent information through frequency modulation. This approach allows for "programming" the
circuits by adjusting passive elements like resistors and capacitors, directly supporting our D3 design objective.
We also highlight that we aim to support D4 (low-cost and minimum components) with our analog NeuroCamtags,
as they require only eight components.
Finally, recent advances in backscatter analog techniques [4], greatly inspired our design. In particular, us-

ing ultra-low-power oscillators for frequency-modulated sensing wireless communication of audio as well as
resistance based sensors. While existing designs use it for backscatter, we use oscillator circuits for light based
frequency modulation.
On the camera side, we capture the frequency of the LED blinks, which correspond to the transmitted FM

signal from the analog NeuroCamTag. To isolate and extract FM signals from noise, a signal processing step
is employed, filtering based on the intended signal bandwidth. Following this filtering process, the signal is
segmented into discrete windows, allowing for the extraction of key features that can be harnessed to train a
Machine Learning (ML) model for activity recognition.

5.1 Circuit Implementation
Energy Harvesting and Management: Similar to our digital tag, the analog counterpart uses solar panels
(SM141K06L) for self-sustaining power. The analog tag employs frequency modulation (FM), runs continuously,
and supports power-intensive sensors like microphones, leading to customizable sizes. For example, a microphone-
equipped tag needs six solar cells and is post-it-note sized, while a light-dependent resistor version requires
only two cells and is smaller. The analog NeuroCamTag offers flexibility with 2, 4, or 6 solar panels. This design
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Fig. 6. Analog NeuroCamTag SystemOverview A. Battery-free wireless NeuroCamTag back and front view. B. Frequency
modulated LED signal sent to camera C. Machine Learning, event processing pipeline that classifies activity.

Fig. 7. Analog NeuroCamTag Schematic

flexibility led to the creation of the analog NeuroCamTag, featuring break lines on our PCB (refer to Figure 6A),
allowing for configurations with 2, 4, or 6 solar panels.

Power from solar panels goes to a Low-Dropout Regulator (LDO) TPS7A0333DBVR with ultra-low quiescent
current (IQ) of 200nA, ensuring signal stability. Each LDO port connects to a 1000µF ceramic capacitor for a fixed
3.3-volt output.
555 timer oscillator and sensors: The output voltage from the Low Dropout (LDO) regulator is applied

to an astable-multivibrator circuit using a 555 timer, which acts as a resistance-to-frequency converter. We
utilized a CSS555 timer, an ultra-low power timer that consumes a minimal 5 µA at 1.2 V. This timer is part of a
resistor-capacitor network consisting of resistors R1 and R2 and capacitor CT. The circuit generates oscillations
at a specific carrier frequency and duty cycle, determined by the following relationship:

Oscillation Frequency : f =
1.44

((𝑅1 + 2 × 𝑅2) ×𝐶𝑇 ) (2)

Duty Cycle: D =
(𝑅1 + 𝑅2)

(𝑅1 + 2 × 𝑅2) (3)

The carrier frequency and duty cycle are inversely proportional to the values of R1, R2, and CT. Lower values
of these components yield higher frequencies and shorter duty cycles, whereas higher values result in lower
frequencies and longer duty cycles. These component values (R1, R2, and CT) can be customized on our PCB
(Figure 7), allowing the creation of new tags with distinct carrier frequencies or "IDs." This customization supports
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the identification of multiple tags operating on a different carrier frequency. We tested R1=4MΩ, R2=470KΩ and
CT=1nF for a carrier frequency of 270Hz for the microphone tag.

In our circuit design (see Figure 7), the input signal to the Control Voltage (CV) pin of the timer modulates the
output frequency and duty cycle. This modulation depends on the characteristics of the signal applied to the
CV pin. Various sensors, such as microphones, light-dependent resistors, or pressure sensors, can be connected
to this pin. They produce a frequency-modulated (FM) voltage signal at the output of the timer, which is then
transmitted through an LED with a resistor, sending out the FM signal.

5.2 Software for Demodulating Analog NeuroCamTags
Similar to digital NeuroCamTag, an analog NeuroCamTag’s LED blinks generate events with a polarity that
indicate either ON or OFF states, triggered by changes in brightness from the tag’s LED (Figure 6B). The tag’s
frequency modulation dictates the frequency of these events, correlating to the LED signal’s frequency. Our
camera records these events, capturing their timing and XY coordinates accurately. To extract the events, we use
our camera API; specifically, we set a time buffer of 2ms; this ensures all events captured within the 2ms are
passed to further processing blocks in the software pipeline.

Frequency Detection, Clustering and Filtering: To process the events along with their XY coordinates, we
first convert each event that is timestamped into frequencies and cluster the frequencies to reduce redundancies
using an implementation that is similar to FrequencyCam [33]. We then use a series of low-pass and high-pass
filters to extract the signal of interest. For instance, our analog microphone NeuroCamTag uses 270 Hz carrier
and uses a bandwidth from 250 Hz - 2KHz to modulate and send data; therefore, we filter out other frequencies
(Figure 6C). However, if an environment has other sensors, such as resistive sensors (such as potentiometers,
sliders, and light dependent resistors), they can occupy other parts of the available spectrum such as above 2KHz
or below 250Hz, and their bandwidth is customizable depending on the resolution of the device desired.

5.3 Activity Recognition & Machine Learning
We use machine learning to classify activities based on the FM signal received from our analog NeuroCamTag. In
particular, we used our analog battery-free microphone tag (Figures 1 and 7) to capture audio and send FM data
wirelessly to our machine learning pipeline. Upon receiving and demodulating the FM signal, we extract features
from a sliding window of 4000 data points and compute the time domain and frequency domain features. For
spectral features, we used a 128 point Fast Fourier Transform (FFT) overlapping 50% from the signal data window.
In addition, we used TSFEL [5], a feature extraction toolbox, to create spectral features (e.g. continuous wavelet
transform, quantiles, binned entropy and etc.) In total, 41 features were fed into the machine learning model.

Figure 8 shows a series of different activities and their associated retrieved spectrum content. Note the variations
in the duration, frequency bands, and amplitudes (intensity of color) for each of the activities.
For the classification of activities and user interactions, we use a random forest classifier although, other

models e.g., boosted trees or dense networks are compatible with our analog NeuroCamTags).
We ran our random forest classifier using Gridsearch [32] to systematically determine the number of estimators

and the random forest criterion (gini, entropy or log loss). Gridsearch determined 60 as the optimal number of
estimators and ’gini’ as the optimal criterion. These parameters were cross validated 5 fold by mean to determine
the desired parameters.
Due to the variations in environmental conditions and end-use (i.e., applications), we expect that the system

will require an initial calibration to train the activity classifier when first installed. Based on our preliminary
studies, we have observed that this calibration can be accomplished in just a few minutes. However, if there is a
change in the device type (e.g., replacing a microwave) that operates at a different frequency than the previous
device, an additional calibration may be necessary.
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Fig. 8. Activity spectrograms from microphone equipped, sound encoded, analog NeuroCamTag

6 Technical Evaluation
In this section, we detail a series of experimental evaluations of our combined hardware and software system
across several key dimensions. These explorations focus on 1) Analyzing how range, transmission speed, and
accuracy impact our sensing devices, 2) Measuring the accuracy of message transmission at different angles
of attack in our tags, 3) Examining the density limitations of tag placement, 4) Investigating how background
interactions influence accuracy, and 5) Conducting various tests to confirm the power efficiency of our sensors.

Our accuracy tests were conducted primarily on digital tags, which communicate via binary data (sequences of
1’s and 0’s). In contrast, analog tags emit a continuous signal. For these, we assessed the detectability of their
modulated carrier frequencies under varying conditions, such as different distances.

Fig. 9. BPS and message accuracy Fig. 10. BPS and bit accuracy rate

6.1 Experiment #1
Transmission Speed and Accuracy: To examine the range and transmission speed capabilities of our system,
we implemented our digital NeuroCamTags encoding process, utilizing an LED device in the lab. We transmitted
a 16-bit message (see §4.1) with varying identifiers corresponding to different transmission speeds: IDs of 0001,
0002, 0003, 0004 & 0005, representing speeds of 250, 1000, 2000, 3000, and 4000 BPS, respectively. Our testing
involved moving our camera, equipped with decoding software, to distances of 10, 30, and 50 feet to gauge the
decoding accuracy (see Figures 9 and 10). These distances were selected to mirror typical indoor room lengths.
Our findings show a high message accuracy rate, exceeding 95% for all tested distances and speeds up to 3000
BPS. However, at 4000 BPS, accuracy notably decreased to below 75%, attributed to a hardware limitation in the
camera’s event processing capacity due to its readout architecture [33].
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Table 1. Long Range Message and Bit Accuracy for through hole (THT) and surface mount (SMD) LED

Accuracy Type LED Type Distance
100 ft 200 ft

Message SMD 95.0% 1.0%
THT 90.0% 95.0%

Bit SMD 97.4% 1.0%
THT 89.8% 95.2%

Following our assessment of the message accuracy rate, we proceeded to analyze the bit accuracy rate. We
attained a bit accuracy rate exceeding 97.6% at 3000 BPS, mirroring our message accuracy rate at this speed
(Figure 10). However, as the transmission speed increased, the bit accuracy further declined. At 4000 BPS, we
observed a bit accuracy rate of 62.7%, equivalent to approximately 10 bits received per 16 bits transmitted.

Analog Accuracy Experiment: As previously discussed, for analog tags, we conducted basic tests to detect
modulated carrier frequencies of 300Hz, 1000Hz, and 2000Hz, the latter being the upper limit of our range. Our
observations confirmed that these frequencies were successfully received using our demodulating software and
demonstrated similar data throughput and range as the digital tag.

6.2 Experiment #2
Long Range and Accuracy Experiments: After establishing the maximum operating speed of our devices, we
then tested their transmission range limits. We selected two extended distances of 100 feet and 200 feet for this
purpose, with 200 feet being the maximum distance manageable in our indoor environment. At these distances,
we implemented our message encoding and decoding software. We also explored the effect of LED type on
transmission characteristics by comparing surface mount device (SMD) LEDs (part number IN-P32AT5UW) and
through-hole (THT) LEDs.

The results were quite significant. At 100 feet, the THT LED sustained an impressive message accuracy rate of
90%. This is close to the SMD LED, whose accuracy was 95%. At 200 feet, the THT LED continued to maintain its
accuracy level, but the SMD LED’s accuracy fell to 1% (see Table 1). This difference in performance is primarily
due to the higher microcandela (mcd) value of THT LED, which is 35,000 mcd, as opposed to the 1,000 mcd of
the SMD LED. Because the neuromorphic camera operates by detecting changes in light’s contrast, as the LEDs’
distance from the camera increases, their mcd values diminish, leading to a decrease in contrast and, subsequently,
impacting the transmission accuracy.

6.3 Experiment #3
Angle between Camera and Tag: Following our initial insights into the long-range capabilities of THT LEDs,
we were motivated to explore further the dynamics of our system. We particularly focused on how the accuracy
of message transmission interacts with the angle of attack and the type of LED. This led us to conduct another
set of experiments that focus on these variables.

In these tests, we broadcast messages while varying the camera’s position across different angles and distances.
This setup allowed us to run our decoding pipeline under diverse conditions. The results, presented in Figure
11, reveal the accuracy of the message for both THT and SMD LEDs at distances of 10 and 50 feet and at angles
from directly facing the sensor (0°) to nearly sideways (85°). In particular, at a 90° angle, neither type of LED was
visible to the neuromorphic camera, and hence, 90° is not included in our analysis.
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Fig. 11. Message accuracy (%) at different camera to
LED viewing angles. THT: Through Hole LED (orange),
SMD: Surface Mount Device (blue)

Fig. 12. Conceptual number of tags placed 1° apart on
a 40’ by 10’ wall at 30’ and 50’ distance from camera.

Our tests revealed that the SMD LED delivered steady and reliable performance across all angles and distances
tested. It was particularly effective at right angles of 0° and 90°, maintaining an accuracy rate of over 90%. This
high level of consistency is likely due to the SMD LED’s broad viewing angle of 120 degrees, which is significantly
wider than the 15-degree viewing angle of the THT LED. Meanwhile, at a moderate angle of 45°, both the THT
and SMD LEDs showed commendable performance, achieving accuracy rates of 99% and above.

6.4 Experiment #4
Contrast Effect on Accuracy:Neuromorphic cameras function by detecting changes in light contrast, prompting
us to test two distinct background colors, white and black, to assess their impact on our tag design. In our
experiment, we positioned an LED against either a solid white background (using copy paper) or a dark background
(black poster board) and then transmitted our message. The camera was relocated to various distances (10 feet,
30 feet, and 50 feet) for testing, and we operated our message decoding software in different lighting conditions
(with lights on and off). As Table 2 indicates, a dark black background provides consistently high recognition
accuracy in indoor settings. Consequently, we suggest placing our tags against darker backgrounds for optimal
performance.

6.5 Experiment #5
Distance Between Tags: To investigate the proximity limits for placing NeuroCamTags while maintaining high
message accuracy, we positioned two tags at various angles relative to the camera. This setup allowed us to
control their separation distances. We simultaneously broadcasted messages from these tags and then analyzed
the decoded outputs. The separation distance between the tags was dictated by their angular distance in relation
to the camera. For instance, at a 1° angle, as shown in Figure 12, the tags were 6.3 inches apart at 30 feet and 10.5
inches apart at 50 feet. We tested angles of 0.1°, 0.5°, and 1°, with the results detailed in Table 3, to identify the
minimum viable distance between tags while maintaining high message accuracy.
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Table 2. Message accuracy with different LED background
contrast.

Dark BG White BG

10 Feet Ambient light 99% 76%
No light 99% 93%

30 Feet Ambient light 97% 75%
No light 100% 100%

50 Feet Ambient light 99% 20%
No light 100% 100%

Table 3. Message accuracy at different degree separation be-
tween tags.

Degree of Separation

Distance (ft) 0.1° 0.5° 1.0°
30 58.9% 80.7% 91.1%
50 58.9% 73.3% 85.6%

Our results demonstrated that message accuracy remained above 90% at 30 feet and exceeded 85% at 50 feet
with a minimum angular separation of 1° between tags. These overall tag density measurements were calculated
considering a 70° horizontal camera field of view. Additionally, Figure 12 illustrates the feasible tag density on a
10’x40’ wall at distances of 30 and 50 feet, assuming a 1° angular separation between tags. Based on these findings,
we estimate the capacity to place approximately 1400 tags on a 40-foot wall at 30 feet and around 578 tags at 50
feet.

Fig. 13. Power characteristics for NeuroCamTag A. Blink frequency for the digital tag in different light intensities. B.
Minimum required light intensity for the analog tag in different solar panel configurations.

6.6 Experiment #6
As previously mentioned, to ensure interactivity (e.g., continuous user interaction through buttons, knobs,
etc.), it’s essential to transmit multiple messages per second. This not only minimizes errors but also maintains
responsiveness. Given our message length of 16 bits and the Size, Weight, Power, and Cost (SWaP-C) limitations
of our tags, we aimed to assess the power requirements for sensing and broadcasting multiple messages and
determine the optimal transmission speed (BPS).
Operational Power Budget of Digital tag: As a first step, we measured the operational power needed for

digital NeuroCamTags under various lux conditions. We measured this by using the Nordic Power Profiler Kit II
as a power meter across the singular solar panel that charges our digital NeuroCamTag. The NeuroCamTag was
made to run the constant blink program at 3000 BPS and would broadcast a message consisting of all 1’s. The
messages per second would be set so that the average power expended during operation would equal the average
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Table 4. Energy expense to send a digital message at different
BPS by various sensors.

BPS Message Type

Constant
Blink

Button
Press

Read
1 ADC

Read
2 ADC

500 85.4 𝜇J 90.2 𝜇J 100.9 𝜇J 175.7 𝜇J
1000 49.4 𝜇J 53.9 𝜇J 55.3 𝜇J 102.4 𝜇J
2000 25.4 𝜇J 26.8 𝜇J 28.2 𝜇J 53.9 𝜇J
3000 13.6 𝜇J 13.8 𝜇J 15.9 𝜇J 30.1 𝜇J

Table 5. Cold Start Time In Different Lighting Environ-
ments

Capacitor Cold Start Time

1500 LUX 1000 LUX 500 LUX

680 𝜇F 16V 47 s 1.8 min 3.9 min
2200 𝜇F 6.3V 2.5 min 6.8 min 12.3 min
4400 𝜇F 6.3V 4.8 min 12.0 min 22.8 min
0.047 F 5.5V 52.8 min 2.3 hr 4.5 hr
0.25 F 5.5V 3.6 hr 7.8 hr 15 hr
0.5 5.5VF 6.7 hr 18.3 hr 34 hr

power delivered by the solar panel, see Figure 13. Our results are as follows: at 1500 lux, digital tags operated
with 360µW of power; at 1000 lux, they operated with 260µW of power; and at 500 lux, they operated with a
mere 65µW of power.

Power per Sensing Type: We also performed a power analysis on four key input sensing methods expected
to be supported by our digital NeuroCam tags. These methods include constant blinking (for purposes like ID and
pose tracking), button presses (applicable in game controllers, reed switches, etc.), reading one ADC (suitable for
temperature sensors, sliders, etc.), and reading two ADCs (for joysticks, operating dual sliders, etc.). As discussed
in the section on MCU and Computation (see §4.1), it’s noted that buttons function in a low-power mode 4 (LPM4),
while other input types oscillate between low-power mode 3 (LPM3) and the active mode due to the requirement
of an auxiliary clock for ADC Reads. We used the Nordic Power Profiler Kit II to measure energy consumption
from MCU wakeup to sleep mode, capturing characteristics like ADC initiation, button press power, and BPS.
Our evaluation of the power cost per message for sensing and transmitting data is presented in Table 4. We

experimented with varying message transmission rates, including 500 BPS, 1000 BPS, 2000 BPS, and 3000 BPS. We
performed our analysis at 3000 BPS, which was the highest speed/accuracy that still allowed for high accuracy
(see §6). The results indicate that a transmission speed of 3000 BPS was the most power-efficient across all input
sensing types.
Lux vs Message Rate vs Sensing Type: After determining that 3000 BPS is the most energy-efficient

transmission speed, our next task involved assessing the number of messages that digital tags could transmit
under varying light conditions, ranging from 500 lux (low light) to 1500 lux (bright environments). We conducted
this evaluation for our four input sensing methods: constant button, button press, 1ADC, and 2ADC. In this
experiment, we adjusted the device’s message rate until it reached a stable capacitor voltage in different lighting
scenarios.

Our findings, as depicted in Figure 13A, indicate that at the lowest light level of 500 lux, we were able to detect
and transmit multiple messages for both button presses and constant blinking. In moderate light conditions,
ranging from 500 to 1000 lux, we successfully achieved the sensing and transmission of 3-5 messages per second
for all input types except for 2ADC. In brighter settings, exceeding 1000 lux, the rate increased to 5-8 messages
per second for all conditions, again except for 2ADC. These results align closely with the energy consumption
per message type observed in our prior studies.

Operational Power Budget of Analog Tag: Additionally, we investigated the relationship between lighting
conditions and the number of solar panels required for our analog tags to function optimally under various
lighting scenarios. Table 13B presents the necessary configurations of solar panels corresponding to different lux
levels. Given that the Analog tag operates in an "always on" mode, it has a higher power consumption. Presently,
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our analog microphone tag includes an electric microphone with a gain amplifier, which consumes approximately
250µA, in addition to the 555 timer and the rest of the circuit components. Since our analog tags are adaptable to
light conditions, their power budget is determined by the solar panels used. We characterize the power required
to run these tags in different lux, as seen in Figure 13B.
Energy Storage vs Cold Start vs Capacity: Finally, we aimed to explore how the choice of energy storage

(capacitors) impacts cold start times and tag energy life. We measured the time it took for the NeuroCamTag to
start operating from a fully uncharged state, ranging from 0 to 3.9 volts on the storage capacitor, marking the
beginning of the AEM10941’s buck converter.

Our findings reveal that smaller capacitors have a quick 4-minute start-up time even under moderate lux (500)
conditions, while larger capacitors have a longer cold start time. However, the trade-off is that smaller caps
provide limited power during power failures compared to larger caps. This highlights the importance of selecting
capacitors tailored to specific applications: smaller capacitors for intermittent systems like temperature probes or
reed switches and larger ones for high-frequency interactions like joystick controllers or constant blinking ID
tags.

7 Applications
We propose several interactive applications to demonstrate both digital and analog NeuroCamTags: 1) Sensors
and Interactive Devices 2) Multi-user, Multi-tag applications, 3) Object Use Tracking in Smart Kitchen and 4)
Object Use Tracking in Smart Workshop.

7.1 Sensors and Interactive Devices
Input Devices: Buttons, Sliders, Knobs and Joystick We developed a variety of rich input devices that
incorporate NeuroCamTags. These include inputs such as pressing a button (as illustrated in Figure 14A), rotating
a knob (Figure 14D), sliding a control (Figure 14C), and maneuvering joysticks across XY coordinates (Figure 14F).
Each device utilizes the ultra-low-power MSP430 microcontroller unit (MCU) in the digital NeuroCamTag. This
setup operates on an interrupt-driven basis, toggling between low-power states and an active mode. Specifically,
the button-tagged device alternates between LPM4 and active state, whereas other input devices transition
between LPM3 and active state. For input mechanisms like knobs and sliders, a basic resistive divider circuit is
employed to monitor voltage changes through the ADC, broadcasting the voltage at a rate of 3000 BPS. This
process occurs at an optimized frequency of 7 messages per second, ensuring the system remains sufficiently
responsive for quick human interactions. In the case of the joystick input device, the tag is activated from LPM3
to first measure and transmit the ADC value for the ’x’ axis, then pauses briefly for 5ms before measuring and
transmitting the ’y’ axis ADC value. This approach effectively tracks both axes of the joystick, maintaining a
practical transmission rate of nearly 4 messages per second.

Interactive Sensors:We also provide a variety of interactive sensors designed to monitor smart environments.
For example, in workshop or kitchen settings, our temperature sensors (illustrated in Figure 15) can detect
temperature changes. Utilizing reed switches, we have developed an application for monitoring supply levels
(Figure 16B). This system records each interaction, keeps track of inventory, and sends out wireless notifications
when restocking is needed. Additionally, we have equipped smart moisture sensors (Figure 14B) to monitor the
soil moisture around plants, using ADC readings from the MCU on our digital tags for wireless communication.
The moisture data transmitted is compared against a pre-defined soil moisture threshold and alerts the user
depending on needs. Additionally, we have incorporated pressure sensors in our tags, which are designed to log
and monitor pressure as recorded by users.
Multiple User, Multi Tag Applications We demonstrate in Figure 16 our system’s capability in managing

interactions from multiple users concurrently engaged in a game of ’tic-tac-toe’. This interaction is facilitated
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Fig. 14. Applications of digital NeuroCamTag A. Button Press B. Soil moisture C. Linear slider D. Rotary knob E.
Pressure sensor F. Joystick controller

Fig. 15. Occlusion aware environment sensing A. Battery-free microphone modulated LED signal sent to neuromorphic
camera in a workshop environment. B. Confusion matrix accuracy (%) for classes in the kitchen and the workshop.

using two analog NeuroCamTags, each set to a unique carrier frequency that corresponds to specific display
colors. Our system decodes these frequencies along with their locations to map them on the display, enabling
each player to simultaneously draw on the screen in their distinctive colors.
Figure 2B depicts a pong game with two users employing the digital NeuroCamTag model pictured in 14D.

Here, each game controller incorporates a tag assigned with a distinct "ID." This unique identification allows the
system to accurately distinguish and process the signals emitted from the rotary sensors in each controller.

7.2 Smart Environments - Kitchen & Workshop
Using our battery-free analog and digital NeuroCamTags, we have created a smart kitchen and workshop
environment, as illustrated in Figure 15. In both the kitchen and workshop, we deployed temperature sensors,
reed switches, and a microphone tag.

SensorsWe employed a temperature sensor on the oven (Figure 1) to monitor its temperature in the kitchen
and on a hot glue gun (Figure 2) in the workshop. Reed switches were utilized to track the usage of kitchen
drawers (1). Additionally, our analog microphone tag was deployed in both environments to monitor and predict
activities using the previously described machine learning (ML) pipeline. The system enables us to track and
predict the usage of various objects in both the workshop and the kitchen.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 122. Publication date: September 2024.



122:18 • Scott et al.

Activity Recognition The analog NeuroCamTag system was deployed for recording data from both the
kitchen and the workshop. Notice in our workshop environment (Figure 15), that even though the user activity
is occluded, our system can still pick up audio data. We collected data for eleven activities: Microwave, Faucet,
Blender, Mixer, Vacuum, Blower, CNC, Drill, Hammer, Hot Air Gun, and Silence. During raw data collection
by the Neuromorphic Camera, only one object was active at a time. Each activity was recorded twice, with a
duration of 120 seconds for each recording. The machine learning model was trained on data collected over three
different days, with each day’s sessions having distinct lighting conditions to ensure the model’s robustness.
The NeuroCamTag machine learning model evaluation utilized a leave-one-out cross-validation method by

collecting a separate, never-used dataset. The analog NeuroCamTag system demonstrated an average classification
accuracy of 96.3% across various objects in specific locations and diverse ambient light conditions. Notably, the
false positive rate remained low at 1.3%. Specific details regarding classification rates for each object are detailed
in the confusion matrix (Figure 15). For example, the misclassification of a "hot gun" as a "faucet" exhibited a
false positive rate of 11%. Similarly, the misclassification of a "drill" as a "blower" exhibited a false positive rate of
3.7%. These observations shed light on the system’s behavior in specific recognition scenarios, indicating areas
for potential refinement and further investigation.

Fig. 16. Multi-user interactive controls demo A. Analog NeuroCamTag playing Tic-Tac-Toe B. Digital NeuroCamTag
reed switch monitoring cabinet access

7.3 Long-Term Deployment Study: Kitchen
7.3.1 Procedure. We used three digital NeuroCamTags in a kitchen setting from Figure 1, featuring two drawer
monitoring tags (reed switch) and one toaster monitoring tag (temperature sensing). The location mimicked
actual real-world deployment and NeuroCamTags were used in an everyday setting. The lowest lux measured
throughout the experiment was 746 lux. Our system was deployed for 144 hours, and one experimenter visited it
several times each day. Each of the digital tags was configured to broadcast every second at 3000 bps. During
each visit, one or multiple tasks were performed, such as opening a drawer and/or turning on the toaster to
either the ’toast’ setting or the ’warm’ setting. The task, time, and duration were recorded manually to establish
ground truth interactions. Additionally, the start temperature and peak temperature were recorded using an
AMES infrared thermometer.

7.3.2 Results. Figure 17 shows each device’s status for the 6-day period. Over the 6-day period, over 2,000,000
data points were collected. The 36 ground truth operations were compared to the recorded data, 100% of actions
were detected. Additionally, as seen in Figure 17, the toaster temperature monitor recorded both the temperature
of the toaster during use and ambient temperatures when it was not in use. Also, while there were only 36 actions,
the drawer sensor can detect how long the drawer was open (from close to open to close).
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Fig. 17. Multiple event distribution over time of three NeuroCamTags deployed over a 6-day period. The events show the
continuous operating nature of the tags sensing activities, which include using a toaster oven and opening/closing drawers.

8 Discussion
In this section, we compare our work and discuss the advantages over existing work in two key areas: visible
light communication (VLC) based sensing systems and battery-free RF sensing.

8.1 Visible Light Communication and Sensing
In the field of visible light communication (VLC) based sensing systems, a wide array of research has significantly
advanced the technology. Schmid et al. [44] initially developed an LED to LED VLC system, achieving data
transmission over 2 meters at 800 b/s utilizing 289 mW, and later enhanced this with an IoT VLC system [45] using
PWM ON-OFF Keying for up to 400 b/s transmission. Additional work in low-power communication technologies
includes Xu et al. [57], who developed Passive VLC in 2017, noting a power consumption of 150 µW and achieving
a range of 4.5 meters. Additionally, the RetroVLC system, with a power consumption of 90µW, demonstrated
effective communication over distances of up to 2.4 meters [24]. Wu et al. [55] introduced RetroTurbo, which
reached 7.5 meters and consumed 0.8 mW transmitting up to 8 kbps. Xu et al. [56] built RetroMUMIMO and
investigated concurrency in visible light backscatter communications (VLBC) to reach 3.75 meters using 0.2 mW
emphasizing reflective architectures. LightAnchors [1], closely aligned with our research, utilized advancements
in slow-motion cameras, such as the iPhone 7’s 240 fps feature, to detect point light LEDs in a scene. Though
effective, LightAnchors relied on energy-intensive traditional RGB cameras that require constant operation for
cue detection. In contrast, our works novel neuromorphic cameras, which are highly energy-efficient (about
1mW) and capable of an impressive 4000 Hz (4000 FPS) data capture rate per pixel. This enables the simultaneous
capture of multiple point light LED sources at high frame rates.

Moreover, our study showcases the capability for long-range battery-free sensing of user interactions (Figure
18), operating at a mere 65µW, even in low-light (500 lux) conditions, as detailed in the section on the operational
power of the digital tag (Section §6.6).

8.2 Battery-free RF Interaction sensing
Battery-free wireless interactive sensing systems come in two categories: those that require instrumentation of
objects with tags such as RFID [42] and those that take advantage of wireless signals around us such as Wi-fi,
mmWave, etc not requiring labels and use RF reflection from human/object movement to detect interaction. We
now go over a brief overview of these works.
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Fig. 18. Distance and power comparison of recent Visible Light Communication (VLC) technology [1, 24, 28, 55–57]

8.2.1 Tag-based RF Sensing approaches: To provide battery-free RF sensing, the tagging based approach relies on
designing tags that harvest ambient energy from the environment to wirelessly communicate about interaction.
There is a need to balance energy harvesting from environmental or human interactions with power efficiency,
functionality, circuit complexity, and form factor. Amongst tag-based RF Sensing approaches is Wang’s LightSign
[53], which combines VLC with RFID adding a photodiode to an RFID circuit to enhance tag localization, but are
range limited due to light power requirement.

The first battery-free wireless sensors are rooted in RFID tags like WISP [42, 51] and Moo [31]. They featured
programmable tags with onboard sensors wirelessly communicating via radio frequency backscatter. This led to
the development of a hybrid analog-digital modulation scheme using WISP [48] for transmitting acoustic data.
RFID based sensor advancements were furthered in PaperID [21], RapID [47], ID sense [23], LiveTag [15], and
RF Bandaid [39], extending to touch interactions and multi-touchpoint detection. Similar to RFID backscatter
mechanisms, otherWifi-based backscatter tags [60], mmWave based backscatter tags [27] have also been proposed
for on-body sensors and environmental monitoring, respectively.
Finally, RF tags have also focused on purely analog communication [3, 28, 40, 61] due to their simplicity and

power efficiency. For example, Ranganathan et al. [39] demonstrated RFBandaid operating at 160µWwith a range
of 9 meters. Although all these advancements are notable, most of the aforementioned RF tag based sensing
technologies have a limited range of 1̃2m

Recent advances such as Lorea [52], Lora Backscatter [49] tags have extended these ranges to several hundred
meters. For an in-depth analysis of the relationship between range and input power at the transmitter, we direct
the readers to the work of Ranganathan et al [40] (see Figure 9 in that paper).
Furthermore, there is an array of non-backscatter communication techniques, i.e., active communication, in

the realm of battery-free sensors that offer extended range but at the cost of increased energy. This category
encompasses straightforward sense-and-transmit sensors powered by ambient energy, these include systems that
use, energy-harvesting, and commodity radio communication technologies such as low-power BLE.
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For instance, Fraternali et al. introduced Pible in 2018, harnessing BLE Advertising with a power consumption
of 648 µW [11]. Jeon’s luXbeacon, operating on the nRF51822 platform, offers a power-efficient solution with an
estimated range of approximately 100 meters [20]. Similarly, Saoda et al. developed Herald in 2019, boasting a
power consumption of 200 µW and a similar range estimation [43]. Yang et al. [59] created Minikers, tags that
harvest kinetic energy from human interaction to actuate devices such as opening blinds and communicate via
BLE.

8.2.2 Tag-free RF Sensing approaches: Unlike NeuroCamTag, which uses a physical tag, tag-free sensing exists
and uses RF to communicate, locate and identify gestures, poses and activities. Several RF-based systems leverage
WiFi for activity recognition [25, 38, 41] and some use mmWave [58, 62] for activity recognition.

8.2.3 Comparison to existing RF sensing approaches: Our work has several advantages over RF-based approach
in general. First, NeuroCamTags is based on visible light and thus completely immune to the interference
from RF spectrum, which is already crowded with “default” LAN and WPAN technologies such as WiFi, BLE.
Second, because of the backscattering nature, some of the aforementioned RF-based systems tend to expose their
transmissions to a wide surrounding area, leaving a good chance for side readers to overhear the information
being transmitted. In contrast, NeuroCamTag relies on VLC, where signals are confined within a physical space
and cannot penetrate walls, providing better security and privacy compared to RF signals. Through the use of
highly directional LEDs, we can further constrain the uplink transmission to stick along the tag-reader path.
Overall, NeuroCamTag has good security properties, while other RF systems have to enhance their security with
extra efforts (padding, delaying packets, or injecting dummy traffic) [6]. Additionally, by leveraging physicality
of the NeuroCamTags can provide agency to users to control privacy. For instance, using tape to cover the
LED makes for a more cost effective means of privacy [9]. Finally, VLC systems do not cause electromagnetic
interference like RF systems, making them suitable for use in sensitive environments like hospitals, etc. where
sensors need to be deployed and non-interference to RF medical devices is crucial. Similarly, in environments that
produce high EMI, like factories with heavy machinery, NeuroCamTags could ensure reliable machine-to-machine
sensing and communication.

9 Limitations & Future Work
Power: Further power optimization could be a future goal. For instance, our current implementation of the
analog tag is not optimized to run in the ultra-low-power mode of the CSS555 timer. The timer can run under 5µA
by reprogramming the EEPROM. Furthermore, LDOs such as the TI TPS7A0328DBVR, which operate at lower
voltage levels, are available to further reduce the power budget for analog tags. Likewise, the power consumption
for operating microphones can be optimized through the utilization of an ICS-40310 MEMS microphone, capable
of running on a 1V supply and consuming as little as 16µA of current, all while delivering a 64dB SNR. Similarly,
other ultra-low power MCUś like the Apollo4 [50] could be explored for Digital NeuroCamTags.
Additional Energy Harvesting Techniques: The current implementation of our tags operates solely on

ambient solar power. However, future iterations of NeuroCamTags could utilize alternative sources such as
harvested piezoelectric, thermal, motion, etc. Prior research [26, 63] has explored various sources that are
opportunistically available in the built environment.
Modulation and Error Correction techniques: Additional modulation techniques such as phase shift

keying (PSK) could be explored and might improve the ability of our system to pick up event transmissions even
faster. However, they would require additional changes to the camera sensor’s hardware and software. Finally,
lightweight error correction techniques such as hamming codes could be explored by increasing the parity bits.
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Line of Sight Operation: Due to the directional nature of light, NeuroCamTags inherently benefit from
enhanced security, such as being resistant to eavesdropping. However, it also faces a fundamental limitation,
shared by all visible sensing and communication systems, in that it cannot function in non-line-of-sight scenarios.

Direct Edge Sensing and Multi-class predictions
As we continue to develop NeuroCamTags, effectively managing complex computational tasks becomes

essential away from the edge and in centralized processing environments. Our current setup, which includes the
analog audio tag, does not utilize on-device machine learning; instead, it relies on centralized processing near the
camera. This approach allows us to leverage algorithms that require greater computational power than edge
devices typically provide.
A significant opportunity for future enhancement is the ability to detect multiple active devices simultane-

ously—a challenge often referred to as polymorphic multi-classification [30]. While our system currently employs
classical machine learning techniques for single-class detection, expanding to use dense neural networks (DNNs)
for multi-classification tasks could be possible because of the computational power available away from the edge.
This progression would enable more sophisticated and responsive interactions in smart environments, taking full
advantage of the computational capabilities available near the camera.

10 Conclusion
With our work on NeuroCamTags, we demonstrate a novel approach to enable battery-free, long-range wireless
sensing utilizing neuromorphic cameras. We demonstrate through technical evaluations the robustness of our
approach with respect to sensing at long distances as much as 200 feet across a variety of lighting conditions,
including low light (500 lux) and across wide placements in an environment. We demonstrate a range of rich
interactive sensing opportunities with NeuroCamTags, including battery-free input devices such as buttons,
sliders, and knobs, with multiple multi-user application devices. Furthermore, we demonstrate the ability of the
NeuroCamTag system to monitor using up to 11 objects in two smart environments (a kitchen and a workshop)
with a high activity recognition accuracy of 96.3%. Our techniques enable a rich interaction application space for
HCI researchers with a focus on creating battery-free and eco-friendly intelligent environments.
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